Agregado toping en los menus

This commit is contained in:
Pablinux
2025-05-25 12:10:15 -05:00
parent c7aabd4d1f
commit 0b8549c63c
53 changed files with 3235 additions and 2916 deletions

182
node_modules/qs/README.md generated vendored
View File

@@ -1,11 +1,14 @@
<p align="center">
<img alt="qs" src="./logos/banner_default.png" width="800" />
</p>
# qs <sup>[![Version Badge][npm-version-svg]][package-url]</sup>
[![github actions][actions-image]][actions-url]
[![coverage][codecov-image]][codecov-url]
[![dependency status][deps-svg]][deps-url]
[![dev dependency status][dev-deps-svg]][dev-deps-url]
[![License][license-image]][license-url]
[![Downloads][downloads-image]][downloads-url]
[![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/9058/badge)](https://bestpractices.coreinfrastructure.org/projects/9058)
[![npm badge][npm-badge-png]][package-url]
@@ -53,7 +56,9 @@ var nullObject = qs.parse('a[hasOwnProperty]=b', { plainObjects: true });
assert.deepEqual(nullObject, { a: { hasOwnProperty: 'b' } });
```
By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use `plainObjects` as mentioned above, or set `allowPrototypes` to `true` which will allow user input to overwrite those properties. *WARNING* It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.
By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use `plainObjects` as mentioned above, or set `allowPrototypes` to `true` which will allow user input to overwrite those properties.
*WARNING* It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten.
Always be careful with this option.
```javascript
var protoObject = qs.parse('a[hasOwnProperty]=b', { allowPrototypes: true });
@@ -80,8 +85,8 @@ assert.deepEqual(qs.parse('foo[bar][baz]=foobarbaz'), {
});
```
By default, when nesting objects **qs** will only parse up to 5 children deep. This means if you attempt to parse a string like
`'a[b][c][d][e][f][g][h][i]=j'` your resulting object will be:
By default, when nesting objects **qs** will only parse up to 5 children deep.
This means if you attempt to parse a string like `'a[b][c][d][e][f][g][h][i]=j'` your resulting object will be:
```javascript
var expected = {
@@ -110,7 +115,18 @@ var deep = qs.parse('a[b][c][d][e][f][g][h][i]=j', { depth: 1 });
assert.deepEqual(deep, { a: { b: { '[c][d][e][f][g][h][i]': 'j' } } });
```
The depth limit helps mitigate abuse when **qs** is used to parse user input, and it is recommended to keep it a reasonably small number.
You can configure **qs** to throw an error when parsing nested input beyond this depth using the `strictDepth` option (defaulted to false):
```javascript
try {
qs.parse('a[b][c][d][e][f][g][h][i]=j', { depth: 1, strictDepth: true });
} catch (err) {
assert(err instanceof RangeError);
assert.strictEqual(err.message, 'Input depth exceeded depth option of 1 and strictDepth is true');
}
```
The depth limit helps mitigate abuse when **qs** is used to parse user input, and it is recommended to keep it a reasonably small number. The strictDepth option adds a layer of protection by throwing an error when the limit is exceeded, allowing you to catch and handle such cases.
For similar reasons, by default **qs** will only parse up to 1000 parameters. This can be overridden by passing a `parameterLimit` option:
@@ -147,32 +163,44 @@ var withDots = qs.parse('a.b=c', { allowDots: true });
assert.deepEqual(withDots, { a: { b: 'c' } });
```
If you have to deal with legacy browsers or services, there's
also support for decoding percent-encoded octets as iso-8859-1:
Option `decodeDotInKeys` can be used to decode dots in keys
Note: it implies `allowDots`, so `parse` will error if you set `decodeDotInKeys` to `true`, and `allowDots` to `false`.
```javascript
var withDots = qs.parse('name%252Eobj.first=John&name%252Eobj.last=Doe', { decodeDotInKeys: true });
assert.deepEqual(withDots, { 'name.obj': { first: 'John', last: 'Doe' }});
```
Option `allowEmptyArrays` can be used to allowing empty array values in object
```javascript
var withEmptyArrays = qs.parse('foo[]&bar=baz', { allowEmptyArrays: true });
assert.deepEqual(withEmptyArrays, { foo: [], bar: 'baz' });
```
Option `duplicates` can be used to change the behavior when duplicate keys are encountered
```javascript
assert.deepEqual(qs.parse('foo=bar&foo=baz'), { foo: ['bar', 'baz'] });
assert.deepEqual(qs.parse('foo=bar&foo=baz', { duplicates: 'combine' }), { foo: ['bar', 'baz'] });
assert.deepEqual(qs.parse('foo=bar&foo=baz', { duplicates: 'first' }), { foo: 'bar' });
assert.deepEqual(qs.parse('foo=bar&foo=baz', { duplicates: 'last' }), { foo: 'baz' });
```
If you have to deal with legacy browsers or services, there's also support for decoding percent-encoded octets as iso-8859-1:
```javascript
var oldCharset = qs.parse('a=%A7', { charset: 'iso-8859-1' });
assert.deepEqual(oldCharset, { a: '§' });
```
Some services add an initial `utf8=✓` value to forms so that old
Internet Explorer versions are more likely to submit the form as
utf-8. Additionally, the server can check the value against wrong
encodings of the checkmark character and detect that a query string
or `application/x-www-form-urlencoded` body was *not* sent as
utf-8, eg. if the form had an `accept-charset` parameter or the
containing page had a different character set.
Some services add an initial `utf8=✓` value to forms so that old Internet Explorer versions are more likely to submit the form as utf-8.
Additionally, the server can check the value against wrong encodings of the checkmark character and detect that a query string or `application/x-www-form-urlencoded` body was *not* sent as utf-8, eg. if the form had an `accept-charset` parameter or the containing page had a different character set.
**qs** supports this mechanism via the `charsetSentinel` option.
If specified, the `utf8` parameter will be omitted from the
returned object. It will be used to switch to `iso-8859-1`/`utf-8`
mode depending on how the checkmark is encoded.
If specified, the `utf8` parameter will be omitted from the returned object.
It will be used to switch to `iso-8859-1`/`utf-8` mode depending on how the checkmark is encoded.
**Important**: When you specify both the `charset` option and the
`charsetSentinel` option, the `charset` will be overridden when
the request contains a `utf8` parameter from which the actual
charset can be deduced. In that sense the `charset` will behave
as the default charset rather than the authoritative charset.
**Important**: When you specify both the `charset` option and the `charsetSentinel` option, the `charset` will be overridden when the request contains a `utf8` parameter from which the actual charset can be deduced.
In that sense the `charset` will behave as the default charset rather than the authoritative charset.
```javascript
var detectedAsUtf8 = qs.parse('utf8=%E2%9C%93&a=%C3%B8', {
@@ -189,8 +217,7 @@ var detectedAsIso8859_1 = qs.parse('utf8=%26%2310003%3B&a=%F8', {
assert.deepEqual(detectedAsIso8859_1, { a: 'ø' });
```
If you want to decode the `&#...;` syntax to the actual character,
you can specify the `interpretNumericEntities` option as well:
If you want to decode the `&#...;` syntax to the actual character, you can specify the `interpretNumericEntities` option as well:
```javascript
var detectedAsIso8859_1 = qs.parse('a=%26%239786%3B', {
@@ -200,8 +227,7 @@ var detectedAsIso8859_1 = qs.parse('a=%26%239786%3B', {
assert.deepEqual(detectedAsIso8859_1, { a: '☺' });
```
It also works when the charset has been detected in `charsetSentinel`
mode.
It also works when the charset has been detected in `charsetSentinel` mode.
### Parsing Arrays
@@ -219,9 +245,8 @@ var withIndexes = qs.parse('a[1]=c&a[0]=b');
assert.deepEqual(withIndexes, { a: ['b', 'c'] });
```
Note that the only difference between an index in an array and a key in an object is that the value between the brackets must be a number
to create an array. When creating arrays with specific indices, **qs** will compact a sparse array to only the existing values preserving
their order:
Note that the only difference between an index in an array and a key in an object is that the value between the brackets must be a number to create an array.
When creating arrays with specific indices, **qs** will compact a sparse array to only the existing values preserving their order:
```javascript
var noSparse = qs.parse('a[1]=b&a[15]=c');
@@ -245,8 +270,9 @@ var withIndexedEmptyString = qs.parse('a[0]=b&a[1]=&a[2]=c');
assert.deepEqual(withIndexedEmptyString, { a: ['b', '', 'c'] });
```
**qs** will also limit specifying indices in an array to a maximum index of `20`. Any array members with an index of greater than `20` will
instead be converted to an object with the index as the key. This is needed to handle cases when someone sent, for example, `a[999999999]` and it will take significant time to iterate over this huge array.
**qs** will also limit specifying indices in an array to a maximum index of `20`.
Any array members with an index of greater than `20` will instead be converted to an object with the index as the key.
This is needed to handle cases when someone sent, for example, `a[999999999]` and it will take significant time to iterate over this huge array.
```javascript
var withMaxIndex = qs.parse('a[100]=b');
@@ -290,7 +316,8 @@ assert.deepEqual(arraysOfObjects, { a: ['b', 'c'] })
### Parsing primitive/scalar values (numbers, booleans, null, etc)
By default, all values are parsed as strings. This behavior will not change and is explained in [issue #91](https://github.com/ljharb/qs/issues/91).
By default, all values are parsed as strings.
This behavior will not change and is explained in [issue #91](https://github.com/ljharb/qs/issues/91).
```javascript
var primitiveValues = qs.parse('a=15&b=true&c=null');
@@ -373,16 +400,17 @@ var decoded = qs.parse('x=z', { decoder: function (str, defaultDecoder, charset,
}})
```
Examples beyond this point will be shown as though the output is not URI encoded for clarity. Please note that the return values in these cases *will* be URI encoded during real usage.
Examples beyond this point will be shown as though the output is not URI encoded for clarity.
Please note that the return values in these cases *will* be URI encoded during real usage.
When arrays are stringified, by default they are given explicit indices:
When arrays are stringified, they follow the `arrayFormat` option, which defaults to `indices`:
```javascript
qs.stringify({ a: ['b', 'c', 'd'] });
// 'a[0]=b&a[1]=c&a[2]=d'
```
You may override this by setting the `indices` option to `false`:
You may override this by setting the `indices` option to `false`, or to be more explicit, the `arrayFormat` option to `repeat`:
```javascript
qs.stringify({ a: ['b', 'c', 'd'] }, { indices: false });
@@ -418,6 +446,20 @@ qs.stringify({ a: { b: { c: 'd', e: 'f' } } }, { allowDots: true });
// 'a.b.c=d&a.b.e=f'
```
You may encode the dot notation in the keys of object with option `encodeDotInKeys` by setting it to `true`:
Note: it implies `allowDots`, so `stringify` will error if you set `decodeDotInKeys` to `true`, and `allowDots` to `false`.
Caveat: when `encodeValuesOnly` is `true` as well as `encodeDotInKeys`, only dots in keys and nothing else will be encoded.
```javascript
qs.stringify({ "name.obj": { "first": "John", "last": "Doe" } }, { allowDots: true, encodeDotInKeys: true })
// 'name%252Eobj.first=John&name%252Eobj.last=Doe'
```
You may allow empty array values by setting the `allowEmptyArrays` option to `true`:
```javascript
qs.stringify({ foo: [], bar: 'baz' }, { allowEmptyArrays: true });
// 'foo[]&bar=baz'
```
Empty strings and null values will omit the value, but the equals sign (=) remains in place:
```javascript
@@ -473,8 +515,8 @@ assert.equal(qs.stringify({ a: 'c', z: 'y', b : 'f' }, { sort: alphabeticalSort
```
Finally, you can use the `filter` option to restrict which keys will be included in the stringified output.
If you pass a function, it will be called for each key to obtain the replacement value. Otherwise, if you
pass an array, it will be used to select properties and array indices for stringification:
If you pass a function, it will be called for each key to obtain the replacement value.
Otherwise, if you pass an array, it will be used to select properties and array indices for stringification:
```javascript
function filterFunc(prefix, value) {
@@ -498,6 +540,44 @@ qs.stringify({ a: ['b', 'c', 'd'], e: 'f' }, { filter: ['a', 0, 2] });
// 'a[0]=b&a[2]=d'
```
You could also use `filter` to inject custom serialization for user defined types.
Consider you're working with some api that expects query strings of the format for ranges:
```
https://domain.com/endpoint?range=30...70
```
For which you model as:
```javascript
class Range {
constructor(from, to) {
this.from = from;
this.to = to;
}
}
```
You could _inject_ a custom serializer to handle values of this type:
```javascript
qs.stringify(
{
range: new Range(30, 70),
},
{
filter: (prefix, value) => {
if (value instanceof Range) {
return `${value.from}...${value.to}`;
}
// serialize the usual way
return value;
},
}
);
// range=30...70
```
### Handling of `null` values
By default, `null` values are treated like empty strings:
@@ -507,7 +587,8 @@ var withNull = qs.stringify({ a: null, b: '' });
assert.equal(withNull, 'a=&b=');
```
Parsing does not distinguish between parameters with and without equal signs. Both are converted to empty strings.
Parsing does not distinguish between parameters with and without equal signs.
Both are converted to empty strings.
```javascript
var equalsInsensitive = qs.parse('a&b=');
@@ -536,25 +617,21 @@ var nullsSkipped = qs.stringify({ a: 'b', c: null}, { skipNulls: true });
assert.equal(nullsSkipped, 'a=b');
```
If you're communicating with legacy systems, you can switch to `iso-8859-1`
using the `charset` option:
If you're communicating with legacy systems, you can switch to `iso-8859-1` using the `charset` option:
```javascript
var iso = qs.stringify({ æ: 'æ' }, { charset: 'iso-8859-1' });
assert.equal(iso, '%E6=%E6');
```
Characters that don't exist in `iso-8859-1` will be converted to numeric
entities, similar to what browsers do:
Characters that don't exist in `iso-8859-1` will be converted to numeric entities, similar to what browsers do:
```javascript
var numeric = qs.stringify({ a: '☺' }, { charset: 'iso-8859-1' });
assert.equal(numeric, 'a=%26%239786%3B');
```
You can use the `charsetSentinel` option to announce the character by
including an `utf8=✓` parameter with the proper encoding if the checkmark,
similar to what Ruby on Rails and others do when submitting forms.
You can use the `charsetSentinel` option to announce the character by including an `utf8=✓` parameter with the proper encoding if the checkmark, similar to what Ruby on Rails and others do when submitting forms.
```javascript
var sentinel = qs.stringify({ a: '☺' }, { charsetSentinel: true });
@@ -566,8 +643,7 @@ assert.equal(isoSentinel, 'utf8=%26%2310003%3B&a=%E6');
### Dealing with special character sets
By default the encoding and decoding of characters is done in `utf-8`,
and `iso-8859-1` support is also built in via the `charset` parameter.
By default the encoding and decoding of characters is done in `utf-8`, and `iso-8859-1` support is also built in via the `charset` parameter.
If you wish to encode querystrings to a different character set (i.e.
[Shift JIS](https://en.wikipedia.org/wiki/Shift_JIS)) you can use the
@@ -606,7 +682,9 @@ Please email [@ljharb](https://github.com/ljharb) or see https://tidelift.com/se
Available as part of the Tidelift Subscription
The maintainers of qs and thousands of other packages are working with Tidelift to deliver commercial support and maintenance for the open source dependencies you use to build your applications. Save time, reduce risk, and improve code health, while paying the maintainers of the exact dependencies you use. [Learn more.](https://tidelift.com/subscription/pkg/npm-qs?utm_source=npm-qs&utm_medium=referral&utm_campaign=enterprise&utm_term=repo)
The maintainers of qs and thousands of other packages are working with Tidelift to deliver commercial support and maintenance for the open source dependencies you use to build your applications.
Save time, reduce risk, and improve code health, while paying the maintainers of the exact dependencies you use.
[Learn more.](https://tidelift.com/subscription/pkg/npm-qs?utm_source=npm-qs&utm_medium=referral&utm_campaign=enterprise&utm_term=repo)
[package-url]: https://npmjs.org/package/qs
[npm-version-svg]: https://versionbadg.es/ljharb/qs.svg
@@ -623,3 +701,9 @@ The maintainers of qs and thousands of other packages are working with Tidelift
[codecov-url]: https://app.codecov.io/gh/ljharb/qs/
[actions-image]: https://img.shields.io/endpoint?url=https://github-actions-badge-u3jn4tfpocch.runkit.sh/ljharb/qs
[actions-url]: https://github.com/ljharb/qs/actions
## Acknowledgements
qs logo by [NUMI](https://github.com/numi-hq/open-design):
[<img src="https://raw.githubusercontent.com/numi-hq/open-design/main/assets/numi-lockup.png" alt="NUMI Logo" style="width: 200px;"/>](https://numi.tech/?ref=qs)